Journal für praktische Chemie Chemiker-Zeitung © Johann Ambrosius Barth 1997

Arbeitsvorschriften und Meßwerte · Procedures and Data

Synthesis and Properties of 1-Aryl-6-chloro-1,4-dihydro-4-oxothieno [2,3-c]pyridazine-3-carboxylic Acids

Mustafa M. El-Abadelah, Marwan R. Kamal and Wajdi M. Tokan

Amman/Jordan, Chemistry Department, Faculty of Science, University of Jordan

Shua'a O. Jarrar

Amman/Jordan, Arab Veterinary Industrial Co. (AVECO)

Received May 17th, 1996, respectively November 6th, 1996

During the past decade, several 4-quinolones (1), such as ciprofloxacin **1a** [1] and difloxacin **1b** [2] were recognized as useful antibacterial agents. Almost concurrently, a large number of 4-oxocinnoline-3-carboxylic acids **2** was prepared and bioassayed [3–5]. Some 1-ethyl derivatives, e.g. **2a** [3] showed good antibacterial activities, while the related 1-aryl cinnolones, e.g. **2b** [4] were reported as potentially useful agrochemicals [4, 5].

A number of 4-oxothieno[2,3-*b*] pyridine-5-carboxylic acids 3 (bioisosteres of quinolones 1) has been reported to exhibit potency *versus* Gram-negative bacteria [6, 7]. Notable examples are 3a [6], and 3b [7].

To the best of our knowledge, 1-substituted 4-oxo-thieno[2,3-c] pyridazines (potential bioisostere of cinnolones **2**) have not been described in the literature. Moreover, thieno [2,3-c] pyridazines lacking substituents at N1 have received limited attention. Syntheses of model compounds, e.g. **4a** [8] and **4b** [9], via substituted pyridazines have been reported.

The present work describes the synthesis (*via* compounds $5 \rightarrow 8$, Scheme 1), and properties of 1-aryl-6-chloro-1,4dihydro-4-oxothieno[2,3-c]pyridazine-3-carboxylic acids 9. Thus, 3-acetyl-2,5-dichlorothiophene 5 [10] was condensed with dimethyl carbonate in the presence of sodium hydride at 84-86 °C to give the β -keto ester 6 which was coupled with the appropriate arenediazonium chloride to produce the hydrazones 7a-f. Cyclization of deprotonated 7 (sodium hydride in refluxing tetrahydrofuran (THF)) gave the pyridazines 8a-f. A similar process has been successfully applied to syntheses of 1-arylcinnolones [5] and 1-arylquinolones [2]. Saponification of the esters 8a-f produced the acids 9a-f in excellent purities.

Compounds 6-9 were characterized by elemental analysis (Table 1), by ¹H NMR spectroscopy (Table 1), and by electron impact mass spectrometry.

In the mass spectra of compounds 7-9 a-cleavage at the ketone function gives rise to the strong peak for the acylium ion at m/z 179. Loss of carbon monoxide affords the thienyl cation at m/z 151. Fragments corresponding to the azatropylium cations arise from cleavage of the N–N bond. These ions extrude HCN to give the cyclopentadienyl cations. Consecutive ejection of a chlorine atom and methanol from M⁺ leads to ions [M–35]⁺ and [M–67]⁺.

- (CH₃O)₂CO; 84-86 °C (3 to 4 h)/H₂O + AcOH (ii) CH₃ OCH₃ (iii)
 - ArN₂Cl/pyridine + H₂O (2 : 1 v/v); o to 4 °C (5 to 10 min)
 - NaH/dry THF; 15 °C (40 to 50 min), 60 to 63 °C (2 to 3 h) (iv)
 - 0.1M ethanolic NaOH; 23 °C (1 h)/aq. HCl (1M) (v)

The main fragmentation pathway of the molecular ions of 8a-f starts with elimination of the ester group via a process that gives ions $[M-58]^+$. Expulsion of HCN produces the radical cations $[M-85]^+$ as the base peak in a number of cases. The latter ions undergo successive loss of carbon monoxide and a chlorine atom to furnish the ions [M-113]⁺ and [M-148]. Alternatively, ions [M-120]⁺ and [M-148] may be formed first by loss of CO and then of Cl. The ions [M-120] eject CS to give ions [M–192], a process which is common for thiophenes under electron impact [11]. Elimination of the methoxy radical from M⁺ produces the cations M-31 (8-12%). These processes are substantiated by the detection of the appropriate metastable ions. The aryl cations, Ar+, are observed in all cases.

Cl

Br

Compounds 9a-f lose carbon dioxide to produce ions [M-44]^{+.} which fragment as described for the esters 8a-f. The thioformyl cation $H - C \equiv S$ (*m/z* = 45), previously reported for several substituted thiophenes [11], is also observed in the mass spectra of the thiophenes 6-9.

The exchangeable N–H and CO_2H protons of 7 and 9 resonate in the range 12.80-13.15 (s, 1H) and 14.53-14.73 (s, 1*H*); the CO_2CH_3 protons' signals of 8 and 9 appear at 3.83–3.95 (s, 3H). Other typical ¹H NMR signals of 7-9 are included in Table 1.

The target compounds **9a-f** were tested against *Escheri*chiacoli and Pseudomonus aeruginosa by using standard techniques [12]. Aqueous stock solutions were prepared with 0.1M sodium hydroxide. None of these compounds showed any activity at concentrations $\leq 50 \,\mu$ g/ml.

We thank the Arab Veterinary Industrial Company (AVICO), Amman–Jordan, for their generous financial support.

Experimental

Х

Н

F

Melting points : uncorrected. ¹H NMR spectra : Bruker WM 300 spectrometer; CDCl₃ solutions; δ -scale; TMS as internal standard. Electron impact mass spectra : Finnigan MAT 731 spectrometer at 70 eV.

3-Acetyl-2,5-dichlorothiophene (5) was prepared by Friedel Crafts acetylation of 2,5-dichlorothiophene (Fluka) [10].

Methyl 3-(2,5-dichlorothien-3-yl)-3-oxopropanoate (6)

NaH (suspension in oil, 80%) (2.25g, 75 mmol) was added in portions at 23 °C to a stirred solution of 5 (14.00 g, 72 mmol) in anhydrous dimethyl carbonate (150 ml). After stirring at 84-86 °C for 2 to 3h and cooling to 23 °C, the orange reaction mixture was poured onto ice-cold water (350 ml) containing acetic acid (10 ml). The organic layer was separated, and the aqueous layer was extracted with Et_2O (3×70 ml). The combined organic phases were dried (MgSO₄) and the solvent was evaporated. The black gummy residue was extracted with hexane $(6 \times 50 \text{ ml})$. Evaporation of the solvent afforded a yellowish solid (6.10 g, 67%); m.p. 39-41 °C. Crystallization at 0 °C from a filtered (Norite) solution in hexane gave colourless cotton-like crystals (5.30 g, 58%); m.p. 46-47 °C. -MS(m/z): 252 (M⁺, 18%), 217 (40), 179 (100), 151 (7), 116 (8), 81 (14). $-{}^{1}$ H NMR (CDCl₃): δ 3.69 (s, 2.22 H, OCH₃, keto tautomer), 3.74* (s, 0.78 H, OCH₃, enol tautomer), 3.92 (s, 1.48 H, CH₂), 5.68* (s, 0.26 H, vinyl-H, enol), 12.42* (s, 0.26 H, OH, enol), 7.17 (s, 0.78 H, ArH), 7.05* (s, 0.26 H, ArH, enol) (*refers to the minor enol tautomer).

General Procedure for the Synthesis of Methyl 2-(2-Arylhydrazono)-3-(2,5-dichlorothien-3-yl)-3-oxopro-panoates (7a-f)

To a cold (-5 °C) stirrred solution of the aniline (50 mmol) in 6M HCl (40 ml) was added dropwise a solution of NaNO₂ (4.40 g, 64 mmol) in H_2O (15 ml). After stirring at 0 to 3 °C for 20 to 30 min the solution of the arenediazonium chloride was poured under vigorous stirring onto a cold solution (-5 to -10 °C) of the β -keto ester 6 (5.10 g, 20 mmol) in pyridine (40 ml) and H₂O (20 ml). Stirring was continued at 0 to 4 °C until a precipitate of 7 was formed (5 to 10 min). The mixture was diluted with cold H₂O (400 ml) and 7 was filtered and washed with cold H₂O and dried.

Table	1 Phy	sical, Analytic	al and "H INMR Data (of Compo	unas o-	9			
No.	Yield	<i>m.p.</i>	Molecular Formula	% Analysis			H NMR Spectral Data		
(%)	(°C)	(Mol. Mass)	0	Calcd./	Found	0			
			<u> </u>	<u>H</u>	<u>N</u>	<u> </u>	<u>2'-H/6'-H</u>	<u>3'-H / 5'-H 4-H</u>	
6 a	56	46-47	$C_8 H_6 Cl_2 O_3 S$	37.96	2.39	-	12.67		
_			(253.10)	38.04	2.34	-	12.49		
7a	89	123-124	$C_{14}H_{10}Cl_2N_2O_3S$	47.07	2.82	7.84	8.98	7.17 (m _c , 3H) ^b)	7.06 (s)
_			(357.22)	47.17	2.77	7.62	8.81	7.35 (m _c , 2H)	
7b	58	104-105	$C_{14}H_9Cl_2FN_2O_3S$	44.82	2.42	7.47	8.55	7.12 (dd, 7.00 (dd,	6.99 (s)
-		100 101	(375.21)	44.92	2.29	7.14	8.25	J = 9.0) ^c) $J = 9.0$) ^d)	
7c	82	133–134	$C_{14}H_9CI_3N_2O_3S$	42.93	2.32	7.15	8.19	7.25 (d, 7.07 (d,	7.09 (s)
7 1	00	145 146	(391.66) G H D CI N O G	42.96	2.33	6.98	7.99	J = 8.6) $J = 8.6$)	= 01 / 1
70	92	145-146	$C_{14}H_9BrCl_2N_2O_3S$	38.30	2.08	6.42	7.35	7.38 (d, 7.02 (d,	7.01 (s)
7.	4.4	75 77	(430.12)	38.70	2.12	0.40	7.42	J = 8.9 $J = 8.9$	7.02 ()
/e	44	13-11	$C_{15}\Pi_{12}C_{12}N_{2}O_{4}S$	40.33	3.12	7.23	8.28	7.08 (a, 0.88 (a, 1.00))	7.03 (s)
71	70	112 112	(387.24)	40.70	3.20	7.09	8.09	J = 9.0) $J = 9.0$) 7.11 ($J = 7.05$ (J	6.09.(z)
/1	70	112-115	(271, 24)	40.33	3.20	7.55	0.04 9.71	7.11(a, 7.03(a, 1.03))	0.98 (8)
			(3/1.24)	40.34	3.22	7.44	0.71	J = 0.0 $J = 0.0$	5 11
89	55	160-161	C. H.CIN.O.S	52 42	2.83	8 73	10.00	7.50 (m - 3H)b	5-11 7 40 (c)
0a	55	100-101	(320.75)	52.42	2.05	8.62	10.00	$7.50 (m_c, 5H)^{-1}$	7.40 (8)
8b	52	154-156	C. HaClENaOaS	49 64	2.75	8 27	947	$7.00 (m_c, 211)$ 7.64 (dd 7.26 (dd	7.41 (s)
00	54	15. 150	(33874)	49.80	2.30	8.07	9.22	$I = 9(0)^{e}$ $I = 9(0)^{f}$	7.41 (3)
8c	60	169-170	C14HeCloN2O2S	47.34	2.27	7.89	9.03	7 = 9.0, $7 = 9.0$, $7 = 7.0$,	7.40 (s)
	00	102 110	(355.20)	47 53	2 39	7 64	8 82	I = 9(1) $I = 9(1)$	
8d	63	192-193	C14H ₀ BrClN ₂ O ₂ S	42.07	2.02	7.01	8.02	771 (d 753 (d)	7 42 (s)
	02	172 175	(399.66)	41.87	1.90	6.81	8.15	J = 8.6 $J = 8.6$	
8e	52	125-126	C ₁₅ H ₁₁ ClN ₂ O ₄ S	51.36	3.16	7.99	9.14	7.52 (d. 7.04 (d.	7.42 (s)
			(350.78)	51.29	3.06	7.75	8,87	J = 9.0 $J = 9.0$	
8f	56	164-165	$C_{15}H_{11}CIN_2O_3S$	53.82	3.31	8.37	9.58	7.47 (d. 7.34 (d.	7.42 (s)
			(334.78)	53.93	3.14	8.07	9.60	J = 7.4) $J = 7.4$)	
9a	82	240-241	C ₁₃ H ₇ ClN ₂ O ₃ S	50.91	2.30	9.13	10.45	$7.55 (m_c, 5H)^{g}$	7.27 (s)
			(306.73)	50.71	2.10	8.89	10.19		
9b	80	257-258	C ₁₃ H ₆ ClFN ₂ O ₃ S	48.09	1.86	8.63	9.87	7.86 (dd, 7.48 (dd,	7.25 (s)
			(324.72)	48.06	1.86	8.72	9.76	J=9.2) ^h) $J=9.2$) ⁱ)	
9c	84	265 - 266	$C_{13}H_6Cl_2N_2O_3S$	45.77	1.77	8.21	9.40	7.63 (d, 7.56 (d,	7.26 (s)
			(341.17)	45.77	1.72	8.11	9.48	J = 8.5) $J = 8.5$)	
9d	87	268-270	C13H6BrClN2O3S	40.49	1.57	7.26	8.31	7.75 (d, 7.58 (d,	7.26 (s)
			(385.63)	40.60	1.46	7.32	8.21	J = 8.6) $J = 8.6$)	
9e	78	236-237	C ₁₄ H ₉ ClN ₂ O ₄ S	49.93	2.69	8.32	9.52	7.59 (d, 7.07 (d,	7.26 (s)
			(336.75)	49.76	2.53	8.18	9.26	J = 9.0) $J = 9.0$)	
9f	85	233-234	$C_{14}H_9ClN_2O_3S$	52.42	2.83	8.73	10.00	7.60 (d, 7.37 (d,	7.27 (s)
			(320.75)	52.25	2.70	8.63	9.94	J = 7.6) $J = 7.6$)	

a) Analysis for Cl: Calcd.: 28.01%. Found: 27.85%. - b) 4'-H Signal: Overlapped with 3'-H / 5'-H Signals. - c) J_{2'-H-F = 5.1}.

^d) $J_{3':H:F=8,6}$, -^e) $J_{2':H:F=5,0}$, -^f) $J_{3':H:F=1,0,1}$, -^g) 4'-H Signal: Overlapped with 2'-,6'-/3'-,5'-H Signals. -^h) $J_{2':H:F=5,1}$, -ⁱ) $J_{3':H:F=9,2}$.

However, the red oily compound 7e was isolated by extraction with Et₂O $(3 \times 70 \text{ ml})$ and usual workup. On trituration with light petroleum (b.p. 40-60 °C) the product solidified slowly.

Compounds 7a-f were purified by column chromatography (Merck Silica gel 100, particle size 63–200 mm) using CHCl₃/ hexane (1:1 v/v) as the eluent until most of the dark coloured impurities were removed. The chromatogram was then eluted with CHCl₃ to desorb 7. Crystallization from CHCl₃/hexane afforded the pure products.

General Procedure for the Synthesis of Methyl 1-Aryl-6chloro-1,4-dihydro-4-oxothieno[2,3-c]pyridazine-3-carboxylates (8a-f)

NaH (suspension in oil, 80%) (0.20 g, 6.7 mmol) was added portionwise with exclusion of moisture to a stirred solution of 7 (6.0 mmol) in dry THF (200 ml). The reaction mixture was stirred at 23 °C for 40 to 50 min, and then heated at 60–63 °C for 2 to 3 h. The solvent was evaporated and the residue was soaked into H₂O (50 ml) and filtered. Purification by preparative thick layer chromatography (Merck Silica gel 60 HF-254 glass plates, CHCl₃/CH₃OH (99:1 v/v) as solvent) and crystallization from CHCl₃/light petroleum furnished analytically pure samples.

General Procedure for the Synthesis of 1-Aryl-6-chloro-1,4-dihydro-4-oxothieno[2,3-c]pyridazine-3-carboxylic acids (9a-f)

A suspension of 7 (3.5 mmol) in 0.1M NaOH in EtOH solution (80 ml) was stirred at 23 °C for 1h. The solution was acidified with 1M HCl to pH 2. The precipitate was filtered, washed with $H_2O(2 \times 10 \text{ ml})$, dried and crystallized from CHCl₃/light petroleum.

References

- R. Wise, J. M. Andrews, L. J. Edwards, Antimicrob. Agents Chemother. 23 (1983) 559
- [2] D. T. W. Chu, P. B. Fernandes, A. K. Claiborne, E. Pihuleac, C. W. Nordeen, R. E. Maleczka, A. G. Pernet, J. Med. Chem. 28 (1985) 1558
- [3] T. Miyamoto, J. Matsumoto, Chem. Pharm. Bull. 37 (1989) 93
- [4] M. Mizutani, M. Shiroshita, M. Sasaki, H. Okuda, N. Mito, Eur. Pat. Appl. EP 273, 325 (1988); Chem. Abstr. 110 (1989) 75532y
- [5] J. N. Labovitz, L. Fang, Eur. Pat. Appl. EP 197, 226 (1986); Chem. Abstr. 106 (1987) 80404e
- [6] T. Yamazaki, Y. Matsubara, K. Morishima, I. Suenaga, Takeda Kenkyushoho 42 (1983) 297; Chem. Abstr. 100 (1984) 203171n
- [7] J. Bompart, L. Giral, G. Malicorne, M. Puygrenier, Eur. J. Med. Chem. 23 (1988) 457
- [8] A. A. Shalaby, J. Prakt. Chem. 332 (1990) 104

- [9] K. Czech, N. Haider, G. Heinisch, Monatsh. Chem. 122 (1991) 413
- [10] G. B. Bachman, L. V. Heisey, J. Am. Chem. Soc. 70 (1948) 2378
- [11] J. H. Bowie, R. G. Cooks, S.-O. Lawesson, C. Nolde, J. Chem. Soc. (B) **1967**, 616
- M. A. Cohen, T. J. Griffin, P. A. Bien, C. L. Heifetz, J. M. Domagala, Antimicrob. Agents Chemother. 28 (1985) 766

Address for correspondence: Prof. Dr. M. M. El–Abadelah University of Jordan Faculty of Science Chemistry Department Amman/Jordan